

Drainage and Wastewater Management Plan

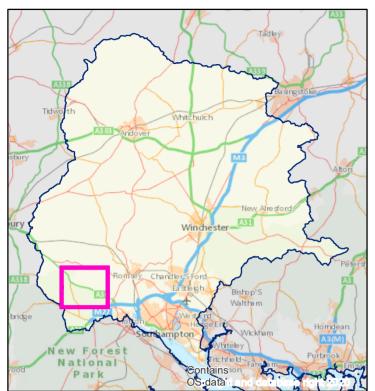
West Wellow Wastewater System Plan

Contents

Wastewater System Map

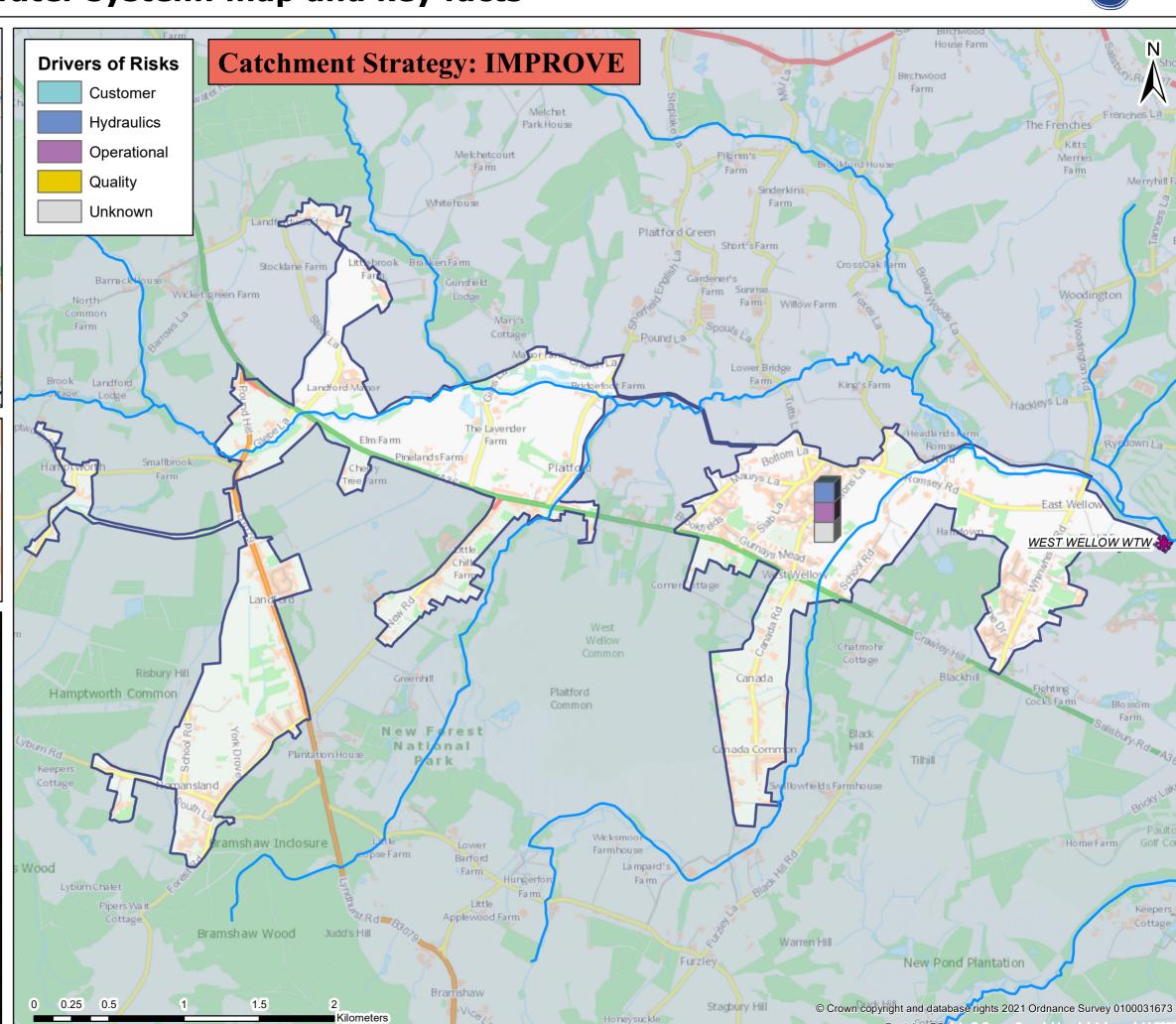
Problem Characterisation

Generic Options


Outline Option Appraisal

Investment Needs

Location of Potential Options


West Wellow wastewater system: map and key facts

Population Equivalent (PE)	4,715
Discharge Waterbody	Blackwater (Test and Itchen)
Number of Pumping Stations	7
Number of Overflows	2
Length of Sewer (km)	80.7
Catchment Reference	WELL

	BRAVA Results Table (WELL)		
	Planning Objective	2020	2050
1	Internal Sewer Flooding Risk	0	
2	Pollution Risk	1	
3	Sewer Collapse Risk	0	
4	Risk of Sewer Flooding in a 1 in 50 year storm	1	1
5	Storm Overflow performance 2 2		2
6	Risk of WTW Compliance Failure	0	0
7	Risk of flooding due to Hydraulic Overload	2	2
8	Dry Weather Flow Compliance	0	0
9	Good Ecological Status / Potential	0	
10	Surface Water Management	0	
11	Nutrient Neutrality	2	2
12	Groundwater Pollution	0	
13	Bathing Waters NA		
14	Shellfish Waters	0	

Problem Characterisation West Wellow (WELL)

This document describes the causes of the risks identified by the Baseline Risk and Vulnerability Assessment (BRAVA). The BRAVA results for this wastewater system are summarised in Table 1. The results indicate that flooding, pollution and water quality are the main concerns in this wastewater system. We have completed risk assessments for 2050 where we have the data and tools available to do so. For the other planning objectives, we will explore how we can predict future risks for the next cycle of DWMPs. All the risk assessment methods need to be reviewed after the first DWMPs have been produced with a view to improve the methods and data for future planning cycles.

Table 1: Results of the BRAVA for West Wellow wastewater system

Pla	nning Objectives	2020	Driver	2050
1	Internal Sewer Flooding Risk	0	•	
2	Pollution Risk	1	Customer	
3	Sewer Collapse Risk	0	•	
4	Sewer Flooding in a 1 in 50-year storm	1	Hydraulic	1
5	Storm Overflow Performance	2	Hydraulic	2
6	WTW Water Quality Compliance	0	1	0
7	Flooding due to Hydraulic Overload	2	Hydraulic	2
8	WTW Dry Weather Flow Compliance	0	•	0
9	Good Ecological Status / Good Ecological Potential	0	1	
10	Surface Water Management	0	ı	
11	Nutrient Neutrality	2	Unknown	2
12	Groundwater Pollution	0	-	
13	Bathing Waters	NA	-	
14	Shellfish Waters	0	-	

Key

BRAVA Risk Band		
NA Not Applicable*		
0	Not Significant	
1	Moderately Significant	
2	Very Significant	

*No issues relevant to planning objective within Wastewater System

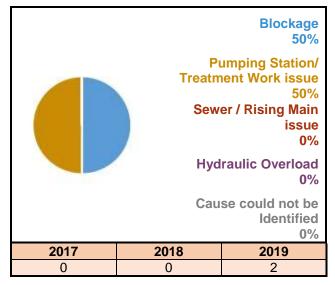
Investment Strategy

The risks identified in this wastewater system mean that we have assigned the following investment strategy:

Improve

This means that we consider that the current performance of the drainage and wastewater system needs to be improved to reduce the impacts on our customers and/or the environment. We will plan investment to reduce the current risks by actively looking to invest capital funding in the short term to address current performance issues (and consider future risks when implementing improvements).

Planning Objective 1: Internal Sewer Flooding Risk


There have been zero (or less than 3) internal flooding incidents reported during the three year period considered by the risk assessment, so the risk is in the 'not significant' band.

Planning Objective 2: Pollution Risk

The number of pollution incidents reported during the three years considered by the risk assessment are shown in Figure 1. The length of sewer in this wastewater system means there have been between 24.51 and 49.01 incidents per 10,000km per year (a threshold set by Ofwat) so the risk is in the 'moderately significant' band.

The primary driver for pollution is 'Customer'. Blockages caused 50% of all incidents recorded in this wastewater system. Blockages are often caused by fats, oils, grease, nappies, wet wipes and sanitary products within the system. These items are non-flushable and should not be disposed of into wastewater systems.

Figure 1: Number of pollution incidents per annum and causes

Planning Objective 3: Sewer Collapse Risk

The number of sewer collapses reported during the three years considered by the risk assessment are shown in Table 2. The length of sewer in this wastewater system means there have been less than 5.72 incidents per 1,000km per year (a threshold set by Ofwat) so the risk is in the 'not significant' band.

Table 2: Sewer collapses and rising main bursts

Sewer Collapse	2017/18	0
	2018/19	0
	2019/20	0
Rising Main Bursts	2017/18	0
	2018/19	0
Duists	2019/20	1

Planning Objective 4: Sewer Flooding in a 1 in 50 Year Storm

The risk of flooding in a 1 in 50 year storm is moderately significant in 2020 and 2050. A hydraulic model is not available for this wastewater system, however our wastewater system vulnerability assessment (using Ofwat's guidance on Risk of Sewer Flooding in a Storm) identified this wastewater system as grade 3/4.

Our wastewater networks are generally designed with capacity for up to a 1 in 30 year storm, hence flooding is expected to occur during more severe storms such as a 1 in 50 year event. Flooding will occur due to insufficient capacity of the drainage system either on the surface before it enters the drainage system, and/or from manholes, in people's homes or at a low point elsewhere in the system.

Planning Objective 5: Storm Overflow Performance

The storm overflow performance risk has been assessed as very significant for both 2020 and 2050. Table 3 shows the overflows that discharge above the low threshold set for storm overflow discharges to Shellfish Water, Bathing Water and inland rivers.

The primary driver for the Storm Overflow Performance is 'Hydraulic.'

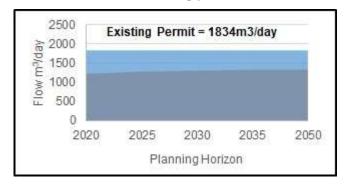
Table 3: Overflows exceeding discharge frequency threshold per annum

	Number of	overflows	Threshold for number of discharges per annum		
_	2020	2050	Low Medium High		
Shellfish Waters	0 Medium	0 Medium	Less than 8	Between 8-10	10 or more
Bathing Waters	0 Medium	0 Medium	Less than 3	Between 3-10	10 or more
Freshwater	1 High	1 High	Less than 20	Between 20-40	40 or more

Planning Objective 6: Wastewater Treatment Works Water Quality Compliance

The risk of non-compliance with our wastewater quality permit has been assessed as not significant for both 2020 and 2050. This is because the wastewater treatment works has no record of compliance failure during the last three years (2018-2020).

Planning Objective 7: Flooding due to Hydraulic Overload


This is an assessment of the risk of flooding from sewers during a 1 in 30 year storm, and more frequent rainfall, to understand where flooding could occur. The risk of sewer flooding due to hydraulic overload is very significant in 2020 and 2050. A network model was not available for this assessment, however the network in the wastewater system exceeds its design capacity for 2020 and 2050.

This indicates that the existing capacity of the wastewater network can already be exceeded during 1 in 30 year storms (or more frequent events).

Planning Objective 8: Wastewater Treatment Works Dry Weather Flow Compliance

The risk of Wastewater Treatment Works Dry Weather Flow (DWF) Compliance is not significant for both 2020 and 2050. This is because the average annual DWF for 2017, 2018 and 2019 has been below 80% of the current permit. The predicted DWF in 2050 is also expected to remain below 80% of the current permit, shown in Figure 2.

Figure 3: Recorded and predicted dry weather flow with existing permit

Planning Objective 9: Good Ecological Status / Good Ecological Potential

This wastewater system is not hydraulically linked to a waterbody where wastewater operations are contributing to not achieving GES/GEP, therefore the risk is not significant.

Planning Objective 10: Surface Water Management

Figure 0 illustrates the sources of water flowing in the wastewater system during a 1 in 20 year storm. It shows that surface water runoff from roofs, road and permeable surfaces constitutes more than 0.0% of the flow in the sewers. The total contribution of foul water from homes is 0.0% with business contributing 0.0%. The baseflow is infiltration from water in the ground and makes up 0.0% of the flow in the system.

Planning Objective 11: Nutrient Neutrality

The risk to internationally designated habitat sites from this wastewater system is very significant in 2020 and 2050. This is because Natural England have advised that there is a risk to condition for the habitat sites that are hydraulically linked to our wastewater system, listed in Table 4.

Table 4: Habitat Sites hydraulically linked to wastewater system

Habitat Sites		
Solent Maritime	Phosphate and Nitrate permit review required Overflow Spills	
Solent & Southampton Water	No Threat/Remedy Identified or Anticipated	
Solent and Dorset Coast	Phosphate and Nitrate permit review required Overflow Spills	

Planning Objective 12: Groundwater Pollution

The risk of Groundwater Pollution is not significant. This is because the wastewater network in this wastewater system does not overlap with any groundwater Source Protection Zones (SPZ) used for water supply.

Planning Objective 13: Bathing Waters

This wastewater system does not discharge into a designated bathing water.

Planning Objective 14: Shellfish Waters

The discharges from this wastewater system can affect the designated shellfish waters shown in Table 5. The risk of not achieving the faecal standards for shellfish in these designated waters from this wastewater system is not

Table 5: Shellfish Waters linked to wastewater system

Shellfish Waters
Southampton Water Sw

significant. This is because any microbes or bacteria from the wastewater will either die or their impact will be dissipated before they reach the shellfish water where the discharges are over 5 km away.

Southern Water

August 2021 Version 1

